Reflection Principles and Kernels in R+ for the Biharmonic and Stokes Operators. Solutions in a Large Class of Weighted Sobolev Spaces
نویسندگان
چکیده
In this paper, we study the Stokes system in the half-space R+, with n > 2. We consider data and give solutions which live in weighted Sobolev spaces, for a whole scale of weights. We start to study the kernels of the biharmonic and Stokes operators. After the central case of the generalized solutions, we are interested in strong solutions and symmetrically in very weak solutions by means of a duality argument.
منابع مشابه
From Strong to Very Weak Solutions to the Stokes System with Navier Boundary Conditions in the Half-Space
We consider the Stokes problem with slip type boundary conditions in the half-space R+, with n > 2. The weighted Sobolev spaces yield the functional framework. We study generalized and strong solutions and then the case with very low regularity of data on the boundary. We apply the method of decomposition introduced in our previous work (see [7]), where it is necessary to solve particular probl...
متن کاملComposition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملExistence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملSolutions of the Divergence and Korn Inequalities on Domains with an External Cusp
This paper deals with solutions of the divergence for domains with external cusps. It is known that the classic results in standard Sobolev spaces, which are basic in the variational analysis of the Stokes equations, are not valid for this class of domains. For some bounded domains Ω ⊂ R presenting power type cusps of integer dimension m ≤ n−2, we prove the existence of solutions of the equatio...
متن کامل